Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
OMICS ; 28(3): 148-161, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38484298

RESUMO

Breast cancer is the lead cause of cancer-related deaths among women globally. Breast cancer metastasis is a complex and still inadequately understood process and a key dimension of mortality attendant to breast cancer. This study reports dysregulated genes across metastatic stages and tissues, shedding light on their molecular interplay in disease pathogenesis and new possibilities for drug discovery. Comprehensive analyses of gene expression data from primary breast tumor, circulating tumor cells, and distant metastatic sites in the brain, lung, liver, and bone were conducted. Genes dysregulated across multiple stages and tissues were identified as metastatic cascade genes, and are further classified based on functional associations with metastasis-related mechanisms. Their interactions with HUB genes in interactome networks were scrutinized, followed by pathway enrichment analysis. Validation for their potential as targets included assessments for survival, druggability, prognostic marker status, secretome annotation, protein expression, and cell type marker association. Results displayed critical genes in the metastatic cascade and those specific to metastatic sites, revealing the involvement of the collagen degradation and assembly of collagen fibrils and other multimeric structure pathways in driving metastasis. Notably, pivotal cascade genes FABP4, CXCL12, APOD, and IGF1 emerged with high metastatic potential, linked to significant druggability and survival scores, establishing them as potential molecular targets. The significance of this research lies in its potential to uncover novel biomarkers for early detection, therapeutic targets, and a deeper understanding of the molecular mechanisms underpinning the metastatic cascade in breast cancer, and with an eye to precision/personalized medicine.


Assuntos
Neoplasias da Mama , Humanos , Feminino , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Transcriptoma/genética , Biologia de Sistemas , Fígado , Colágeno/genética , Regulação Neoplásica da Expressão Gênica , Perfilação da Expressão Gênica
2.
J Med Chem ; 66(4): 2566-2588, 2023 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-36749735

RESUMO

The development of orally bioavailable, furanopyrimidine-based double-mutant (L858R/T790M) EGFR inhibitors is described. First, selectivity for mutant EGFR was accomplished by replacing the (S)-2-phenylglycinol moiety of 12 with either an ethanol or an alkyl substituent. Then, the cellular potency and physicochemical properties were optimized through insights from molecular modeling studies by implanting various solubilizing groups in phenyl rings A and B. Optimized lead 52 shows 8-fold selective inhibition of H1975 (EGFRL858R/T790M overexpressing) cancer cells over A431 (EGFRWT overexpressing) cancer cells; western blot analysis further confirmed EGFR mutant-selective target modulation inside the cancer cells by 52. Notably, 52 displayed in vivo antitumor effects in two different mouse xenograft models (BaF3 transfected with mutant EGFR and H1975 tumors) with TGI = 74.9 and 97.5% after oral administration (F = 27%), respectively. With an extraordinary kinome selectivity (S(10) score of 0.017), 52 undergoes detailed preclinical development.


Assuntos
Antineoplásicos , Carcinoma Pulmonar de Células não Pequenas , Receptores ErbB , Neoplasias Pulmonares , Inibidores de Proteínas Quinases , Pirimidinas , Animais , Humanos , Camundongos , Antineoplásicos/administração & dosagem , Antineoplásicos/farmacologia , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Linhagem Celular Tumoral , Proliferação de Células , Resistencia a Medicamentos Antineoplásicos , Receptores ErbB/antagonistas & inibidores , Receptores ErbB/genética , Neoplasias Pulmonares/tratamento farmacológico , Mutação , Inibidores de Proteínas Quinases/administração & dosagem , Inibidores de Proteínas Quinases/farmacologia , Administração Oral , Pirimidinas/administração & dosagem , Pirimidinas/farmacologia
3.
Cell Oncol (Dordr) ; 44(4): 751-775, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33914273

RESUMO

BACKGROUND: The transition of a primary tumour to metastatic progression is driven by dynamic molecular changes, including genetic and epigenetic alterations. The metastatic cascade involves bidirectional interactions among extracellular and intracellular components leading to disintegration of cellular junctions, cytoskeleton reorganization and epithelial to mesenchymal transition. These events promote metastasis by reprogramming the primary cancer cell's molecular framework, enabling them to cause local invasion, anchorage-independent survival, cell death and immune resistance, extravasation and colonization of distant organs. Metastasis follows a site-specific pattern that is still poorly understood at the molecular level. Although various drugs have been tested clinically across different metastatic cancer types, it has remained difficult to develop efficacious therapeutics due to complex molecular layers involved in metastasis as well as experimental limitations. CONCLUSIONS: In this review, a systemic evaluation of the molecular mechanisms of metastasis is outlined and the potential molecular components and their status as therapeutic targets and the associated pre-clinical and clinical agents available or under investigations are discussed. Integrative methods like pan-cancer data analysis, which can provide clinical insights into both targets and treatment decisions and help in the identification of crucial components driving metastasis such as mutational profiles, gene signatures, associated pathways, site specificities and disease-gene phenotypes, are discussed. A multi-level data integration of the metastasis signatures across multiple primary and metastatic cancer types may facilitate the development of precision medicine and open up new opportunities for future therapies.


Assuntos
Transição Epitelial-Mesenquimal/genética , Perfilação da Expressão Gênica/métodos , Regulação Neoplásica da Expressão Gênica , Neoplasias/genética , Transdução de Sinais/genética , Redes Reguladoras de Genes/genética , Humanos , Imunoterapia/métodos , Mutação , Metástase Neoplásica , Neoplasias/patologia , Neoplasias/terapia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...